Title of article :
On the Space of BV Functions and a Related Stochastic Calculus in Infinite Dimensions
Author/Authors :
Fukushima، نويسنده , , Masatoshi and Hino، نويسنده , , Masanori، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
24
From page :
245
To page :
268
Abstract :
Functions of bounded variation (BV functions) are defined on an abstract Wiener space (E, H, μ) in a way similar to that in finite dimensions. Some characterizations are given, which justify describing a BV function as a function in L(log L)1/2 with the first order derivative being an H-valued measure. It is also shown that the space of BV functions is obtained by a natural extension of the Sobolev space D1, 1. Moreover, some stochastic formulae related to BV functions are investigated.
Keywords :
BV function , Abstract Wiener space , Orlicz space , surface measure , Dirichlet form , generalized Itôיs formula , distorted Ornstein–Uhlenbeck process
Journal title :
Journal of Functional Analysis
Serial Year :
2001
Journal title :
Journal of Functional Analysis
Record number :
1550393
Link To Document :
بازگشت