Title of article :
Transitive Arcs in Planes of Even Order
Author/Authors :
Storme، نويسنده , , L.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1996
Pages :
12
From page :
757
To page :
768
Abstract :
When one considers the hyperovals inPG(2,q),qeven,q>2, then the hyperoval inPG(2, 4) and the Lunelli-Sce hyperoval inPG(2, 16) are the only hyperovals stabilized by a transitive projective group [10]. In both cases, this group is an irreducible group fixing no triangle in the plane of the hyperoval, nor in a cubic extension of that plane. Using Hartleyʹs classification of subgroups ofPGL3(q),qeven [6], allk-arcs inPG(2,q) fixed by a transitive irreducible group, fixing no triangle inPG(2,q) or inPG(2,q3), are determined. This leads to new 18-, 36- and 72-arcs inPG(2,q),q=22h. The projective equivalences among the arcs are investigated and each section ends with a detailed study of the collineation groups of these arcs.
Journal title :
European Journal of Combinatorics
Serial Year :
1996
Journal title :
European Journal of Combinatorics
Record number :
1550480
Link To Document :
بازگشت