Title of article :
Asymptotics for the Ginzburg–Landau Equation in Arbitrary Dimensions
Author/Authors :
Bethuel، نويسنده , , F and Brezis، نويسنده , , H and Orlandi، نويسنده , , G، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
89
From page :
432
To page :
520
Abstract :
Let Ω be a bounded, simply connected, regular domain of RN, N⩾2. For 0<ε<1, let uε: Ω→C be a smooth solution of the Ginzburg–Landau equation in Ω with Dirichlet boundary condition gε, i.e.,[formula] We are interested in the asymptotic behavior of uε as ε goes to zero under the assumption that Eε(uε)⩽M0 |log ε| and some conditions on gε which allow singularities of dimension N−3 on ∂Ω.
Journal title :
Journal of Functional Analysis
Serial Year :
2001
Journal title :
Journal of Functional Analysis
Record number :
1550591
Link To Document :
بازگشت