Title of article :
An upper bound for the chromatic number of line graphs
Author/Authors :
King، نويسنده , , A.D. and Reed، نويسنده , , B.A. and Vetta، نويسنده , , A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
6
From page :
2182
To page :
2187
Abstract :
It was conjectured by Reed [B. Reed, ω , α , and χ , Journal of Graph Theory 27 (1998) 177–212] that for any graph G , the graph’s chromatic number χ ( G ) is bounded above by ⌈ Δ ( G ) + 1 + ω ( G ) 2 ⌉ , where Δ ( G ) and ω ( G ) are the maximum degree and clique number of G , respectively. In this paper we prove that this bound holds if G is the line graph of a multigraph. The proof yields a polynomial time algorithm that takes a line graph G and produces a colouring that achieves our bound.
Journal title :
European Journal of Combinatorics
Serial Year :
2007
Journal title :
European Journal of Combinatorics
Record number :
1550762
Link To Document :
بازگشت