Title of article :
New substructuring domain decomposition methods for advection–diffusion equations
Author/Authors :
Berselli، نويسنده , , Luigi C. and Saleri، نويسنده , , Fausto، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
20
From page :
201
To page :
220
Abstract :
In this paper we consider a nonsymmetric elliptic problem and we use the techniques related to the Steklov–Poincaré operators to propose new substructuring iterative procedures. In particular, we propose two methods that generalize the well-known Neumann–Neumann and Dirichlet–Neumann iterative procedures. We prove that our methods, that use symmetric and positive-definite preconditioners, lead to the construction of iterative schemes with optimal convergence properties. Numerical results for the finite element discretization are given.
Keywords :
domain decomposition , Advection–diffusion equations , Substructuring
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2000
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1550961
Link To Document :
بازگشت