Title of article :
Commutators, Spectral Trace Identities, and Universal Estimates for Eigenvalues
Author/Authors :
Levitin، نويسنده , , Michael and Parnovski، نويسنده , , Leonid، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
21
From page :
425
To page :
445
Abstract :
Using simple commutator relations, we obtain several trace identities involving eigenvalues and eigenfunctions of an abstract self-adjoint operator acting in a Hilbert space. Applications involve abstract universal estimates for the eigenvalue gaps. As particular examples, we present simple proofs of the classical universal estimates for eigenvalues of the Dirichlet Laplacian, as well as of some known and new results for other differential operators and systems. We also suggest an extension of the methods to the case of non-self-adjoint operators.
Keywords :
Thomas–Reiche–Kuhn sum rule. , eigenvalue estimates , Spectral gap , Neumann eigenvalues , Elasticity , commutator identities , Payne–P?lya–Weinberger inequalities , Hile–Protter inequality , Yang inequalities , Laplace operator , Schr?dinger operator , Dirichlet eigenvalues
Journal title :
Journal of Functional Analysis
Serial Year :
2002
Journal title :
Journal of Functional Analysis
Record number :
1550990
Link To Document :
بازگشت