Title of article :
Quadrature and orthogonal rational functions
Author/Authors :
Bultheel، نويسنده , , A. and Gonzلlez-Vera، نويسنده , , P. and Hendriksen، نويسنده , , E. and Njهstad، نويسنده , , Olav، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
25
From page :
67
To page :
91
Abstract :
Classical interpolatory or Gaussian quadrature formulas are exact on sets of polynomials. The Szegő quadrature formulas are the analogs for quadrature on the complex unit circle. Here the formulas are exact on sets of Laurent polynomials. In this paper we consider generalizations of these ideas, where the (Laurent) polynomials are replaced by rational functions that have prescribed poles. These quadrature formulas are closely related to certain multipoint rational approximants of Cauchy or Riesz–Herglotz transforms of a (positive or general complex) measure. We consider the construction and properties of these approximants and the corresponding quadrature formulas as well as the convergence and rate of convergence.
Keywords :
Orthogonal rational functions , Numerical quadrature , Multipoint Padé approximation
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2001
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1551305
Link To Document :
بازگشت