Title of article :
Limit points of eigenvalues of truncated tridiagonal operators
Author/Authors :
Ifantis، نويسنده , , E.K. and Panagopoulos، نويسنده , , P.N.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
10
From page :
413
To page :
422
Abstract :
Let T be the tridiagonal operator Ten=anen+1+an−1en−1+bnen, Te1=a1e2+b1e1, acting on a fixed orthonormal basis {en}, n=1,2,…, of a Hilbert space H. Let PN be the orthogonal projection on the finite-dimensional space HN spanned by the elements {e1,e2,…,eN} and let TN be the truncated operator TN=PNTPN. If T has a unique self-adjoint extension then the set Λ(T)={λ: there exists a sequence of eigenvalues λN of TN with the property λN→λ} contains the spectrum σ(T) of T and examples show that, in general, σ(T)≠Λ(T). For many reasons, the knowledge of the equality σ(T)=Λ(T) is important. In this paper sufficient conditions are presented such that σ(T)=Λ(T).
Keywords :
Spectrum of tridiagonal operators , Limit points of eigenvalues of truncated tridiagonal operators , Continued fractions , Tridiagonal operators , orthogonal polynomials
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2001
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1551478
Link To Document :
بازگشت