Title of article :
d-fold Hermite–Gauss quadrature
Author/Authors :
Hagler، نويسنده , , Brian A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
20
From page :
53
To page :
72
Abstract :
We extend results presented in Gustafon and Hagler (J. Comput. Appl. Math. 105 (1999) 317–326); Hagler (Ph.D. Thesis, University of Colorado, 1997; J. Comput. Appl. Math. 104 (1999) 163–171; Hagler et al. (Lecture Notes in Pure and Applied Mathematics Series, Vol. 1999, Marcel Dekker, New York, 1998, pp. 187–208) by giving a construction of systems of orthogonal rational functions from systems of orthogonal polynomials and explicating the (2dn)-point d-fold Hermite–Gauss quadrature formula of parameters γ,λ>0:∫−∞∞f(x)e−[v[d](γ,λ)(x)]2 dx=∑k=12dnf(hd,n,k(γ,λ))Hd,n,k(γ,λ)+Ed,n(γ,λ)[f(x)],where v[d](γ,λ)(x) is the d-fold composition of v(γ,λ)(x)=(1/λ)(x−γ/x) and where the abscissas hd,n,k(γ,λ) and weights Hd,n,k(γ,λ) are given recursively in terms of the abscissas and weights associated with the classical Hermite–Gauss quadrature. Error analysis, tables of numerical values for nodes, and examples and comparisons are included.
Keywords :
Quadrature , Orthogonal rational functions
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2001
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1551562
Link To Document :
بازگشت