Title of article :
Transformation formula for a double Clausenian hypergeometric series, its q-analogue, and its invariance group
Author/Authors :
S. N. Pitre* and J. Van der Jeugt†، نويسنده , , J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
9
From page :
65
To page :
73
Abstract :
A transformation formula for a double basic hypergeometric series of type Φ0:2;21:2;2 is derived. This transformation yields a double series analogue of Sears’ transformation for a terminating 3Φ2 series. In the limit q→1, the formula reduces to a transformation for a terminating double Clausenian hypergeometric series of unit argument (one of the proper Kampé de Fériet series, F0:2;21:2;2(1,1)). This formula is a double series analogue of Whippleʹs terminating 3F2 transformation. This transformation gives rise to a transformation group (the invariance group) acting on the parameters of the double series. The invariance group is examined and shown to be a subgroup of a double copy of the symmetries of the square.
Keywords :
Double hypergeometric series , Transformation formulae , transformation group , Double basic hypergeometric series
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2002
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1551644
Link To Document :
بازگشت