Title of article :
Tension spline collocation methods for singularly perturbed Volterra integro-differential and Volterra integral equations
Author/Authors :
Horvat، نويسنده , , Vilmo? and Rogina، نويسنده , , Mladen، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
22
From page :
381
To page :
402
Abstract :
We consider the numerical discretization of singularly perturbed Volterra integro-differential equations (VIDE) (∗)εy′(t)=q1(t)−q2(t)y(t)+∫0tK(t,s)y(s) ds, t∈I ≔ [0,T],y(0)=y0and Volterra integral equations (VIE) (∗∗)εy(t)=g(t)−∫0tK(t,s)y(s) ds, t∈Iby tension spline collocation methods in certain tension spline spaces, where ε is a small parameter satisfying 0<ε⪡1, and q1, q2, g and K are functions sufficiently smooth on their domains to ensure that Eqs. (∗) and (∗∗) posses a unique solution. e an analysis of the global convergence properties of a new tension spline collocation solution for 0<ε⪡1 for singularly perturbed VIDE and VIE; thus, extending the existing theory for ε=1 to the singularly perturbed case.
Keywords :
Singularly perturbed Volterra integro-differential equations , Volterra integral equations , Tension spline , collocation method
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2002
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1551684
Link To Document :
بازگشت