Title of article :
Legendre polynomials, Legendre–Stirling numbers, and the left-definite spectral analysis of the Legendre differential expression
Author/Authors :
Everitt، نويسنده , , W.N. and Littlejohn، نويسنده , , L.L. and Wellman، نويسنده , , R.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
26
From page :
213
To page :
238
Abstract :
In this paper, we develop the left-definite spectral theory associated with the self-adjoint operator A(k) in L2(−1,1), generated from the classical second-order Legendre differential equationℓL,k[y](t)=−((1−t2)y′)′+ky=λy (t∈(−1,1)),that has the Legendre polynomials {Pm(t)}m=0∞ as eigenfunctions; here, k is a fixed, nonnegative constant. More specifically, for k>0, we explicitly determine the unique left-definite Hilbert–Sobolev space Wn(k) and its associated inner product (·,·)n,k for each n∈N. Moreover, for each n∈N, we determine the corresponding unique left-definite self-adjoint operator An(k) in Wn(k) and characterize its domain in terms of another left-definite space. The key to determining these spaces and inner products is in finding the explicit Lagrangian symmetric form of the integral composite powers of ℓL,k[·]. In turn, the key to determining these powers is a remarkable new identity involving a double sequence of numbers which we call Legendre–Stirling numbers.
Keywords :
Left-definite Sobolev space , Lagrangian symmetric , Legendre polynomials , Legendre–Stirling numbers , Left-definite self-adjoint operator , spectral theorem
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2002
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1551933
Link To Document :
بازگشت