Title of article :
Asymptotic representations for hypergeometric-Bessel type function and fractional integrals
Author/Authors :
Anatoly A. Kilbas a، نويسنده , , Anatoly A. and Rodr??guez، نويسنده , , Luis and Trujillo، نويسنده , , Juan J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
19
From page :
469
To page :
487
Abstract :
The paper is devoted to the study of asymptotic relations for the functionλγ,σ(β)(z)=βΓ(γ+1−1/β)∫1∞(tβ−1)γ−1/βtσ e−zt dtgeneralising Tricomi confluent hypergeometric function and modified Bessel function of the third kind. The full asymptotic representations for λγ,σ(β)(z) at zero and infinity are established. Applications are given to obtain full asymptotic expansions near zero and infinity for the Liouville fractional integral(I−αf)(x)=1Γ(α)∫x∞f(t) dt(t−x)1−α (x>0; α∈C, Re(α)>0)and for the Erdelyi–Kober-type fractional integral(I−;β,ηαf)(x)=βxβηΓ(α)∫x∞tβ(1−α−η)−1f(t) dt(tβ−xβ)1−α (x>0; α∈C, (Re(α)>0)with β>0 and η∈C of power-exponential function f(t), and for three other fractional integrals.
Keywords :
Asymptotic expansions , Confluent hypergeometric function , Bessel-type function , Liouville and Erdelyi–Kober-type fractional integrals
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2002
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1551983
Link To Document :
بازگشت