Title of article :
Conservation properties of vectorial operator splitting
Author/Authors :
Marinova، نويسنده , , Rossitza S. and Takahashi، نويسنده , , Tadayasu and Aiso، نويسنده , , Hideaki and Christov، نويسنده , , Christo I. and Marinov، نويسنده , , Tchavdar T. Marinov، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
15
From page :
289
To page :
303
Abstract :
This work is concerned with the conservation properties of a new vectorial operator splitting scheme for solving the incompressible Navier–Stokes equations. It is proven that the difference approximation of the advection operator conserves square of velocity components and the kinetic energy as the differential operator does, while pressure term conserves only the kinetic energy. Some analytical requirements necessary to be satisfied of difference schemes for incompressible Navier–Stokes equations are formulated and discussed. The properties of the methods are illustrated with results from numerical computations for lid-driven cavity flow.
Keywords :
Stability and convergence of difference schemes , Conservation properties , Incompressible Navier–Stokes
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2003
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1552057
Link To Document :
بازگشت