Title of article :
A necessary condition for the extension of Szegőʹs asymptotics inside the disk in the Sobolev case
Author/Authors :
Berriochoa، نويسنده , , E. and Cachafeiro، نويسنده , , A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
In the present paper we consider a Sobolev inner product of the following type:〈f(z),g(z)〉s=∫02πf(eiθ)g(eiθ) dμ0(θ)+∫02πf′(eiθ)g′(eiθ) dμ1(θ), z=eiθwith μ0 a finite positive Borel measure on [0,2π] and μ1 a measure in the Szegő class.
ume that the monic Sobolev orthogonal polynomial sequence {φ̃n} satisfies thatlimn→∞ φ̃n(z)zn=Π1(1z)Π1(0)uniformly on subsets K of the complex plane such that infz∈K |z|>ρ, where ρ<1 and Π1(z) is the Szegő function of μ1. Then we prove that the sequence of moments of measure μ0, {cn}, satisfies that limn→∞ cn=0, and therefore μ0 is a continuous measure.
Keywords :
orthogonal polynomials , Sobolev inner products , Szeg?יs theory , Measures on the unit circle
Journal title :
Journal of Computational and Applied Mathematics
Journal title :
Journal of Computational and Applied Mathematics