Title of article :
Orthogonal functions satisfying a second-order differential equation
Author/Authors :
Kwon، نويسنده , , K.H. and Lee، نويسنده , , D.W.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
11
From page :
283
To page :
293
Abstract :
Let {ϕn}n=0∞ be a sequence of functions satisfying a second-order differential equation of the formαϕn″+βϕn′+(σ+λnτ)ϕn=fn,where α, β, σ, τ, and fn are smooth functions on the real line R, and λn is the eigenvalue parameter. Then we find a necessary and sufficient condition in order for {ϕn}n=0∞ to be orthogonal relative to a distribution w and then we give a method to find the distributional orthogonalizing weight w. For such an orthogonal function system, we also give a necessary and sufficient condition in order that the derived set {(pϕn)′}n=0∞ is orthogonal, which is a generalization of Lewis and Hahn. We also give various examples.
Keywords :
orthogonal functions , differential equation , Orthogonality of derivatives
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2003
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1552106
Link To Document :
بازگشت