Title of article :
Orthogonal rational functions and quadrature on an interval
Author/Authors :
Van Deun، نويسنده , , J. and Bultheel، نويسنده , , A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
9
From page :
487
To page :
495
Abstract :
Rational functions with real poles and poles in the complex lower half-plane, orthogonal on the real line, are well known. Quadrature formulas similar to the Gauss formulas for orthogonal polynomials have been studied. We generalize to the case of arbitrary complex poles and study orthogonality on a finite interval. The zeros of the orthogonal rational functions are shown to satisfy a quadratic eigenvalue problem. In the case of real poles, these zeros are used as nodes in the quadrature formulas.
Keywords :
Orthogonal rational functions , quadratic eigenvalue problem , Quadrature
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2003
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1552123
Link To Document :
بازگشت