Title of article :
A connection between orthogonal polynomials on the unit circle and matrix orthogonal polynomials on the real line
Author/Authors :
Cantero، نويسنده , , M.J and Ferrer، نويسنده , , M.P and Moral، نويسنده , , L and Velلzquez، نويسنده , , L، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
Szegőʹs procedure to connect orthogonal polynomials on the unit circle and orthogonal polynomials on [−1,1] is generalized to nonsymmetric measures. It generates the so-called semi-orthogonal functions on the linear space of Laurent polynomials Λ, and leads to a new orthogonality structure in the module Λ×Λ. This structure can be interpreted in terms of a 2×2 matrix measure on [−1,1], and semi-orthogonal functions provide the corresponding sequence of orthogonal matrix polynomials. This gives a connection between orthogonal polynomials on the unit circle and certain classes of matrix orthogonal polynomials on [−1,1]. As an application, the strong asymptotics of these matrix orthogonal polynomials is derived, obtaining an explicit expression for the corresponding Szegőʹs matrix function.
Keywords :
orthogonal polynomials , Semi-orthogonal functions , Asymptotic properties , Matrix orthogonal polynomials
Journal title :
Journal of Computational and Applied Mathematics
Journal title :
Journal of Computational and Applied Mathematics