Title of article :
Theorems on partitions from a page in Ramanujanʹs lost notebook
Author/Authors :
Berndt، نويسنده , , Bruce C. and Ja Yee، نويسنده , , Ae and Yi، نويسنده , , Jinhee، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
16
From page :
53
To page :
68
Abstract :
On page 189 in his lost notebook, Ramanujan recorded five assertions about partitions. Two are famous identities of Ramanujan immediately yielding the congruences p(5n+4)≡0 (mod 5) and p(7n+5)≡0 (mod 7) for the partition function p(n). Two of the identities, also originally due to Ramanujan, were rediscovered by M. Newman, who used the theory of modular forms to prove them. The fifth claim is false, but Ramanujan corrected it in his unpublished manuscript on the partition and τ-functions. The purpose of this paper is to give completely elementary proofs of all four claims. In particular, although Ramanujanʹs elementary proof for his identity implying the congruence p(7n+5)≡0 (mod 7) is sketched in his unpublished manuscript on the partition and τ-functions, it has never been given in detail. This proof depends on some elementary identities mostly found in his notebooks; new proofs of these identities are given here.
Keywords :
Congruences for p(n) , Partition function p(n) , Theta functions
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2003
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1552329
Link To Document :
بازگشت