Title of article :
Algebraic values of analytic functions
Author/Authors :
Waldschmidt، نويسنده , , Michel، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
Given an analytic function of one complex variable f, we investigate the arithmetic nature of the values of f at algebraic points. A typical question is whether f(α) is a transcendental number for each algebraic number α. Since there exist transcendental entire functions f such that f(t)(α)∈Q[α] for any t⩾0 and any algebraic number α, one needs to restrict the situation by adding hypotheses, either on the functions, or on the points, or else on the set of values.
the topics we discuss are recent results due to Andrea Surroca on the number of algebraic points where a transcendental analytic function takes algebraic values, new transcendence criteria by Daniel Delbos concerning entire functions of one or several complex variables, and Diophantine properties of special values of polylogarithms.
Keywords :
Transcendental functions , Algebraic values , Transcendence criterion , Arithmetic functions , Diophantine analysis
Journal title :
Journal of Computational and Applied Mathematics
Journal title :
Journal of Computational and Applied Mathematics