Title of article :
The radial growth of univalent functions
Author/Authors :
Anderson، نويسنده , , J.M. and Hayman، نويسنده , , W.K. and Pommerenke، نويسنده , , Ch.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
11
From page :
27
To page :
37
Abstract :
Let f(z) belong to the well-known class S of functions univalent in the unit disk. It is shown that, in a classical result of Spencer (Trans. Amer. Math. Soc. 48 (1940) 418), this lim-inf condition cannot be replaced by a lim-sup condition. There is a function f in S for which the set for which the lim-sup is positive is uncountably dense in every interval and its complement is of Baire Category I. Such a function cannot be close-to-convex.
Keywords :
radial growth , Uncountable sets , Univalent functions
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2004
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1552692
Link To Document :
بازگشت