Title of article :
Symmetric functions and the Vandermonde matrix
Author/Authors :
Oruç، نويسنده , , Halil and Akmaz، نويسنده , , Hakan K. Akmaz، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
16
From page :
49
To page :
64
Abstract :
This work deduces the lower and the upper triangular factors of the inverse of the Vandermonde matrix using symmetric functions and combinatorial identities. The L and U matrices are in turn factored as bidiagonal matrices. The elements of the upper triangular matrices in both the Vandermonde matrix and its inverse are obtained recursively. The particular value xi=1+q+⋯+qi−1 in the indeterminates of the Vandermonde matrix is investigated and it leads to q-binomial and q-Stirling matrices. It is also shown that q-Stirling matrices may be obtained from the Pascal matrix.
Keywords :
Vandermonde matrix , q-Stirling numbers , symmetric functions , Triangular and bidiagonal factorization
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2004
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1552718
Link To Document :
بازگشت