Title of article :
Interpolating discrete advection–diffusion propagators at Leja sequences
Author/Authors :
Caliari، نويسنده , , M. and Vianello، نويسنده , , M. and Bergamaschi، نويسنده , , L.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
21
From page :
79
To page :
99
Abstract :
We propose and analyze the ReLPM (Real Leja Points Method) for evaluating the propagator ϕ(ΔtB)v via matrix interpolation polynomials at spectral Leja sequences. Here B is the large, sparse, nonsymmetric matrix arising from stable 2D or 3D finite-difference discretization of linear advection–diffusion equations, and ϕ(z) is the entire function ϕ(z)=(ez−1)/z. The corresponding stiff differential system ẏ(t)=By(t)+g,y(0)=y0, is solved by the exact time marching scheme yi+1=yi+Δtiϕ(ΔtiB)(Byi+g), i=0,1,…, where the time-step is controlled simply via the variation percentage of the solution, and can be large. Numerical tests show substantial speed-ups (up to one order of magnitude) with respect to a classical variable step-size Crank–Nicolson solver.
Keywords :
Polynomial interpolation , Sparse Matrix , Exponential operator , Leja sequence , Advection–diffusion problem
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2004
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1552720
Link To Document :
بازگشت