Title of article :
Computing Nash equilibria through computational intelligence methods
Author/Authors :
Pavlidis، نويسنده , , N.G. and Parsopoulos، نويسنده , , K.E. and Vrahatis، نويسنده , , M.N.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
24
From page :
113
To page :
136
Abstract :
Nash equilibrium constitutes a central solution concept in game theory. The task of detecting the Nash equilibria of a finite strategic game remains a challenging problem up-to-date. This paper investigates the effectiveness of three computational intelligence techniques, namely, covariance matrix adaptation evolution strategies, particle swarm optimization, as well as, differential evolution, to compute Nash equilibria of finite strategic games, as global minima of a real-valued, nonnegative function. An issue of particular interest is to detect more than one Nash equilibria of a game. The performance of the considered computational intelligence methods on this problem is investigated using multistart and deflection.
Keywords :
Nash equilibria , differential evolution , Evolution strategies , particle swarm optimization , Evolutionary algorithms
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2005
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1552797
Link To Document :
بازگشت