Title of article :
On Newton-type methods with cubic convergence
Author/Authors :
Homeier، نويسنده , , H.H.H. Homeier، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
8
From page :
425
To page :
432
Abstract :
Recently, there has been some progress on Newton-type methods with cubic convergence that do not require the computation of second derivatives. Weerakoon and Fernando (Appl. Math. Lett. 13 (2000) 87) derived the Newton method and a cubically convergent variant by rectangular and trapezoidal approximations to Newtonʹs theorem, while Frontini and Sormani (J. Comput. Appl. Math. 156 (2003) 345; 140 (2003) 419 derived further cubically convergent variants by using different approximations to Newtonʹs theorem. Homeier (J. Comput. Appl. Math. 157 (2003) 227; 169 (2004) 161) independently derived one of the latter variants and extended it to the multivariate case. Here, we show that one can modify the Werrakoon–Fernando approach by using Newtonʹs theorem for the inverse function and derive a new class of cubically convergent Newton-type methods.
Keywords :
Newton theorem , Iterative Methods , newton method , Newton-type method , Nonlinear equations , Inverse function , Rootfinding
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2005
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1552845
Link To Document :
بازگشت