Title of article :
A symbolic operator approach to several summation formulas for power series
Author/Authors :
He، نويسنده , , T.X. and Hsu، نويسنده , , L.C. and Shiue، نويسنده , , P.J.-S. and Torney، نويسنده , , D.C.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
This paper deals with the summation problem of power series of the form S a b ( f ; x ) = ∑ a ⩽ k ⩽ b f ( k ) x k , where 0 ⩽ a < b ⩽ ∞ , and { f ( k ) } is a given sequence of numbers with k ∈ [ a , b ) or f ( t ) is a differentiable function defined on [ a , b ) . We present a symbolic summation operator with its various expansions, and construct several summation formulas with estimable remainders for S a b ( f ; x ) , by the aid of some classical interpolation series due to Newton, Gauss and Everett, respectively.
Keywords :
Symbolic summation operator , generating function , Power series , Eulerian fraction , Eulerian polynomial , Gauss interpolation , Everttיs interpolation , Eulerian numbers , Newtonיs interpolation
Journal title :
Journal of Computational and Applied Mathematics
Journal title :
Journal of Computational and Applied Mathematics