Title of article :
A relativistic hypergeometric function
Author/Authors :
Ruijsenaars، نويسنده , , S.N.M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
25
From page :
393
To page :
417
Abstract :
We survey our work on a function generalizing 2 F 1 . This function is a joint eigenfunction of four Askey–Wilson-type hyperbolic difference operators, reducing to the Askey–Wilson polynomials for certain discrete values of the variables. It is defined by a contour integral generalizing the Barnes representation of 2 F 1 . It has various symmetries, including a hidden D 4 symmetry in the parameters. By means of the associated Hilbert space transform, the difference operators can be promoted to self-adjoint operators, provided the parameters vary over a certain polytope in the parameter space Π . For a dense subset of Π , parameter shifts give rise to an explicit evaluation in terms of rational functions of exponentials (`hyperbolicʹ functions and plane waves).
Keywords :
Hilbert space transform , Parameter shifts , generalized hypergeometric function , Askey–Wilson difference operators , Askey–Wilson polynomials
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2005
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1552910
Link To Document :
بازگشت