Title of article :
Periodic solutions of a singular differential delay equation with the Farey-type nonlinearity
Author/Authors :
Ivanov، نويسنده , , Anatoli and Liz، نويسنده , , Eduardo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
9
From page :
137
To page :
145
Abstract :
We address the problem of existence of periodic solutions for the differential delay equation ε x ˙ ( t ) + x ( t ) = f ( x ( t - 1 ) ) , 0 < ε ⪡ 1 , with the Farey nonlinearity f ( x ) of the form f ( x ) = mx + A if x ⩽ 0 , mx - B if x > 0 , where | m | < 1 , A > 0 , B > 0 . We show that when the map x ↦ f ( x ) has an attracting 2-cycle then the delay differential equation has a periodic solution, which is close to the square wave corresponding to the limit (as ε → 0 + ) difference equation x ( t ) = f ( x ( t - 1 ) ) .
Keywords :
Singular differential delay equations , Continuous dependence on parameters , Farey-type nonlinearity , Limiting difference equations , Globally attracting cycles , One-dimensional maps , Periodic Solutions
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2005
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1552957
Link To Document :
بازگشت