Title of article :
A feasible descent SQP algorithm for general constrained optimization without strict complementarity
Author/Authors :
Jian، نويسنده , , Jin-Bao and Tang، نويسنده , , Chun-Ming and Hu، نويسنده , , Qing-Jie and Zheng، نويسنده , , Hai-Yan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
In this paper, a class of optimization problems with equality and inequality constraints is discussed. Firstly, the original problem is transformed to an associated simpler problem with only inequality constraints and a parameter. The later problem is shown to be equivalent to the original problem if the parameter is large enough (but finite), then a feasible descent SQP algorithm for the simplified problem is presented. At each iteration of the proposed algorithm, a master direction is obtained by solving a quadratic program (which always has a feasible solution). With two corrections on the master direction by two simple explicit formulas, the algorithm generates a feasible descent direction for the simplified problem and a height-order correction direction which can avoid the Maratos effect without the strict complementarity, then performs a curve search to obtain the next iteration point. Thanks to the new height-order correction technique, under mild conditions without the strict complementarity, the globally and superlinearly convergent properties are obtained. Finally, an efficient implementation of the numerical experiments is reported.
Keywords :
SQP , General constrained optimization , Strict complementarity , Superlinear convergence , Feasible descent algorithm
Journal title :
Journal of Computational and Applied Mathematics
Journal title :
Journal of Computational and Applied Mathematics