Title of article :
Exceptional coupling constants for the Coulomb–Dirac operator with anomalous magnetic moment
Author/Authors :
Schmidt، نويسنده , , K.M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
9
From page :
17
To page :
25
Abstract :
It was recently shown that the point spectrum of the separated Coulomb–Dirac operator H 0 ( k ) is the limit of the point spectrum of the Dirac operator with anomalous magnetic moment H a ( k ) as the anomaly parameter tends to 0; this spectral stability holds for all Coulomb coupling constants c for which H 0 ( k ) has a distinguished self-adjoint extension if the angular momentum quantum number k is negative, but for positive k there are certain exceptional values for c. Here we obtain an explicit formula for these exceptional values. In particular, it implies spectral stability for the three-dimensional Coulomb–Dirac operator if | c | < 1 , covering all physically relevant cases.
Keywords :
stability , Anomalous magnetic moment , Coulomb coupling constant , Dirac operator
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2006
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1553394
Link To Document :
بازگشت