Title of article :
Structure and dimension of multivariate spline space of lower degree on arbitrary triangulation
Author/Authors :
Luo، نويسنده , , Zhongxuan and Wang، نويسنده , , Renhong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
In this paper, we discuss the structure of multivariate spline spaces on arbitrary triangulation by using the methods and results of smoothing cofactor and generator basis of modules. On the base of analyzing the algebraic and geometric results about singularity of S 2 1 ( Δ MS ) , we build the structure of triangulation and give some useful geometric conditions such that S μ + 1 μ ( Δ ) space is singular, and we obtain an algebraic condition which is necessary and sufficient for the singularity of S μ + 1 μ ( Δ ) spaces as well as their dimension formulae. Moreover, the structure matrix of spline spaces over any given partition is defined, which has been used to discuss the structure of S 3 1 ( Δ ) and S 2 1 ( Δ ) spaces over arbitrary triangulation and to prove the nonsingularity of S 3 1 ( Δ ) spaces. This partially settles a conjecture on the singularity of spline spaces in Wang et al., [Multivariate Spline and its Applications, Kluwer Press, Dordrecht, 2002; Academic Press, Beijing, 1994 (in Chinese)]. Meanwhile, the dimension formulae of S 3 1 ( Δ ) , S 2 1 ( Δ ) spaces and the dimension formulae of S μ + 1 μ ( Δ ) ( μ ⩾ 1 ) spaces are also given in this paper.
Keywords :
Smoothing cofactor , Multivariate spline , Generator basis , structure matrix
Journal title :
Journal of Computational and Applied Mathematics
Journal title :
Journal of Computational and Applied Mathematics