Title of article :
Convergence to common fixed point of nonexpansive semigroups
Author/Authors :
Chen، نويسنده , , Rudong and Song، نويسنده , , Yunyan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
10
From page :
566
To page :
575
Abstract :
Let E be a uniformly convex Banach space whose norm is uniformly Gâteaux differentiable, C be closed convex subset of E, S = { T ( s ) : s ⩾ 0 } be a nonexpansive semigroup on C such that the set of common fixed points of { T ( s ) : s ⩾ 0 } is nonempty. Let f : C → C be a contraction, { α n } , { β n } , { t n } be real sequences such that 0 < α n , β n ⩽ 1 , lim n → ∞ α n = 0 , lim n → ∞ β n = 0 and lim n → ∞ t n = ∞ , y 0 ∈ C . In this paper, we show that the two iterative sequence as follows: x n = α n f ( x n ) + ( 1 - α n ) 1 t n ∫ 0 t n T ( s ) x n d s , y n + 1 = β n f ( y n ) + ( 1 - β n ) 1 t n ∫ 0 t n T ( s ) y n d s converge strongly to a common fixed point of { T ( s ) : s ⩾ 0 } which solves some variational inequality when { α n } , { β n } satisfy some appropriate conditions.
Keywords :
Nonexpansive semigroup , uniformly convex Banach space , Uniformly Gâteaux differentiable , common fixed point
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2007
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1553682
Link To Document :
بازگشت