Title of article :
Strong convergence rates for backward Euler on a class of nonlinear jump-diffusion problems
Author/Authors :
Higham، نويسنده , , Desmond J. and Kloeden، نويسنده , , Peter E.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
8
From page :
949
To page :
956
Abstract :
We generalise the current theory of optimal strong convergence rates for implicit Euler-based methods by allowing for Poisson-driven jumps in a stochastic differential equation (SDE). More precisely, we show that under one-sided Lipschitz and polynomial growth conditions on the drift coefficient and global Lipschitz conditions on the diffusion and jump coefficients, three variants of backward Euler converge with strong order of one half. The analysis exploits a relation between the backward and explicit Euler methods.
Keywords :
Implicit , Itô Lemma , Euler–Maruyama method , One-sided Lipschitz condition , Poisson process , stochastic differential equation , Strong convergence
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2007
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1553934
Link To Document :
بازگشت