Title of article :
Numerical approximation of Lévy–Feller diffusion equation and its probability interpretation
Author/Authors :
Zhang، نويسنده , , H. and Liu، نويسنده , , F. and Anh، نويسنده , , V.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
18
From page :
1098
To page :
1115
Abstract :
In this paper, we consider the Lévy–Feller fractional diffusion equation, which is obtained from the standard diffusion equation by replacing the second-order space derivative with a Riesz–Feller derivative of order α ∈ ( 0 , 2 ] ( α ≠ 1 ) and skewness θ ( | θ | ⩽ min { α , 2 - α } ). We construct two new discrete schemes of the Cauchy problem for the above equation with 0 < α < 1 and 1 < α ⩽ 2 , respectively. We investigate their probabilistic interpretation and the domain of attraction of the corresponding stable Lévy distribution. Furthermore, we present a numerical analysis for the Lévy–Feller fractional diffusion equation with 1 < α < 2 in a bounded spatial domain. Finally, we present a numerical example to evaluate our theoretical analysis.
Keywords :
Numerical approximation , Lévy–Feller diffusion , Riesz–Feller potential , Stable probability distributions , Markovian random walk , Stability and convergence
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2007
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1554021
Link To Document :
بازگشت