Title of article :
A Jacobi–Davidson type method for the product eigenvalue problem
Author/Authors :
Hochstenbach، نويسنده , , Michiel E.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
We propose a Jacobi–Davidson type method to compute selected eigenpairs of the product eigenvalue problem A m ⋯ A 1 x = λ x , where the matrices may be large and sparse. To avoid difficulties caused by a high condition number of the product matrix, we split up the action of the product matrix and work with several search spaces. We generalize the Jacobi–Davidson correction equation and the harmonic and refined extraction for the product eigenvalue problem. Numerical experiments indicate that the method can be used to compute eigenvalues of product matrices with extremely high condition numbers.
Keywords :
Product SVD (PSVD) , subspace method , Jacobi–Davidson , Correction equation , Cyclic matrix , Cyclic eigenvalue problem , harmonic extraction , Refined extraction , Product eigenvalue problem
Journal title :
Journal of Computational and Applied Mathematics
Journal title :
Journal of Computational and Applied Mathematics