Title of article :
Approximate proximal algorithms for generalized variational inequalities with pseudomonotone multifunctions
Author/Authors :
Ceng، نويسنده , , L.C. and Yao، نويسنده , , J.C.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
16
From page :
423
To page :
438
Abstract :
The purpose of this paper is to investigate the convergence of general approximate proximal algorithm (resp. general Bregman-function-based approximate proximal algorithm) for solving the generalized variational inequality problem (for short, GVI( T , Ω ) where T is a multifunction). The general approximate proximal algorithm (resp. general Bregman-function-based approximate proximal algorithm) is to define new approximating subproblems on the domains Ω n ⊃ Ω , n = 1 , 2 , … , which form a general approximate proximate point scheme (resp. a general Bregman-function-based approximate proximate point scheme) for solving GVI ( T , Ω ) . It is shown that if T is either relaxed α -pseudomonotone or pseudomonotone, then the general approximate proximal point scheme (resp. general Bregman-function-based approximate proximal point scheme) generates a sequence which converges weakly to a solution of GVI ( T , Ω ) under quite mild conditions.
Keywords :
Generalized variational inequalities , Pseudomonotone multifunctions , Weak accumulation points , Approximate proximal algorithms , Hilbert space , weak convergence
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2008
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1554226
Link To Document :
بازگشت