Title of article :
Two descent hybrid conjugate gradient methods for optimization
Author/Authors :
Zhang، نويسنده , , Li and Zhou، نويسنده , , Weijun، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
14
From page :
251
To page :
264
Abstract :
In this paper, we propose two new hybrid nonlinear conjugate gradient methods, which produce sufficient descent search direction at every iteration. This property depends neither on the line search used nor on the convexity of the objective function. Under suitable conditions, we prove that the proposed methods converge globally for general nonconvex functions. The numerical results show that both hybrid methods are efficient for the given test problems from the CUTE library.
Keywords :
conjugate gradient method , Descent direction , global convergence
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2008
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1554365
Link To Document :
بازگشت