Title of article :
Minimal energy -surfaces on uniform Powell–Sabin-type meshes for noisy data
Author/Authors :
Barrera، نويسنده , , D. and Fortes، نويسنده , , M.A. and Gonzلlez، نويسنده , , P. and Pasadas، نويسنده , , M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
11
From page :
592
To page :
602
Abstract :
In this paper we present a method to obtain for noisy data, a C r -surface, for any r ⩾ 1 , on a polygonal domain which approximates a Lagrangian data set and minimizes a quadratic functional that contains some terms associated with Sobolev semi-norms weighted by some smoothing parameters. The minimization space is composed of bivariate spline functions constructed on a uniform Powell–Sabin-type triangulation of the domain. We prove a result of almost sure convergence and we choose optimal values of the smoothing parameters by adapting the generalized cross-validation method. We finish with some numerical and graphical examples.
Keywords :
approximation , Smoothing , Variational spline , Minimal energy , Noisy data , cross-validation , ? 1 -type triangulation , Powell–Sabin element
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2008
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1554485
Link To Document :
بازگشت