Title of article :
Convergence and superconvergence analysis of finite element methods on graded meshes for singularly and semisingularly perturbed reaction–diffusion problems
Author/Authors :
Zhu، نويسنده , , Guoqing John Chen، نويسنده , , Shaochun، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
The bilinear finite element methods on appropriately graded meshes are considered both for solving singular and semisingular perturbation problems. In each case, the quasi-optimal order error estimates are proved in the ε -weighted H 1 -norm uniformly in singular perturbation parameter ε , up to a logarithmic factor. By using the interpolation postprocessing technique, the global superconvergent error estimates in ε -weighted H 1 -norm are obtained. Numerical experiments are given to demonstrate validity of our theoretical analysis.
Keywords :
Graded meshes , Semisingular perturbation , Finite elements , Superconvergence , error estimates , Singular Perturbation
Journal title :
Journal of Computational and Applied Mathematics
Journal title :
Journal of Computational and Applied Mathematics