Title of article :
Bivariate Lagrange interpolation at the Padua points: Computational aspects
Author/Authors :
Caliari، نويسنده , , Marco and De Marchi، نويسنده , , Stefano and Vianello، نويسنده , , Marco، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
9
From page :
284
To page :
292
Abstract :
The so-called “Padua points” give a simple, geometric and explicit construction of bivariate polynomial interpolation in the square. Moreover, the associated Lebesgue constant has minimal order of growth O ( log 2 ( n ) ) . Here we show four families of Padua points for interpolation at any even or odd degree n , and we present a stable and efficient implementation of the corresponding Lagrange interpolation formula, based on the representation in a suitable orthogonal basis. We also discuss extension of (non-polynomial) Padua-like interpolation to other domains, such as triangles and ellipses; we give complexity and error estimates, and several numerical tests.
Keywords :
Bivariate polynomial interpolation , square , Padua points , Bivariate Chebyshev orthogonal polynomials , reproducing kernel
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2008
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1554616
Link To Document :
بازگشت