Title of article :
Local bifurcations of critical periods for cubic Liénard equations with cubic damping
Author/Authors :
Zou، نويسنده , , Lan and Chen، نويسنده , , Xingwu and Zhang، نويسنده , , Weinian، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
7
From page :
404
To page :
410
Abstract :
Continuing Chicone and Jacobs’ work for planar Hamiltonian systems of Newton’s type, in this paper we study the local bifurcation of critical periods near a nondegenerate center of the cubic Liénard equation with cubic damping and prove that at most 2 local critical periods can be produced from either a weak center of finite order or the linear isochronous center and that at most 1 local critical period can be produced from nonlinear isochronous centers.
Keywords :
Liénard equation , Isochronous center , Bifurcation , Perturbation , Weak center
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2008
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1554662
Link To Document :
بازگشت