Title of article :
Convergent finite element discretizations of the density gradient equation for quantum semiconductors
Author/Authors :
Pinnau، نويسنده , , René and Ruiz V، نويسنده , , Jorge Mauricio and de Andrade، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
We study nonlinear finite element discretizations for the density gradient equation in the quantum drift diffusion model. In particular, we give a finite element description of the so-called nonlinear scheme introduced by Ancona. We prove the existence of discrete solutions and provide a consistency and convergence analysis, which yields the optimal order of convergence for both discretizations. The performance of both schemes is compared numerically, in particular, with respect to the influence of approximate vacuum boundary conditions.
Keywords :
Density gradient equation , Quantum semiconductors , Convergence , Consistency , Numerics , Nonlinear finite element method
Journal title :
Journal of Computational and Applied Mathematics
Journal title :
Journal of Computational and Applied Mathematics