Title of article :
A new family of conjugate gradient methods
Author/Authors :
Shi، نويسنده , , Zhen-Jun and Guo، نويسنده , , Jinhua، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
In this paper we develop a new class of conjugate gradient methods for unconstrained optimization problems. A new nonmonotone line search technique is proposed to guarantee the global convergence of these conjugate gradient methods under some mild conditions. In particular, Polak–Ribiére–Polyak and Liu–Storey conjugate gradient methods are special cases of the new class of conjugate gradient methods. By estimating the local Lipschitz constant of the derivative of objective functions, we can find an adequate step size and substantially decrease the function evaluations at each iteration. Numerical results show that these new conjugate gradient methods are effective in minimizing large-scale non-convex non-quadratic functions.
Keywords :
Unconstrained optimization , global convergence , conjugate gradient method
Journal title :
Journal of Computational and Applied Mathematics
Journal title :
Journal of Computational and Applied Mathematics