Title of article :
New expansions of numerical eigenvalues by Wilson’s element
Author/Authors :
Lin، نويسنده , , Qun and Huang، نويسنده , , Hung-Tsai and Li، نويسنده , , Zi-Cai، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
14
From page :
213
To page :
226
Abstract :
The paper explores new expansions of eigenvalues for − Δ u = λ ρ u in S with Dirichlet boundary conditions by Wilson’s element. The expansions indicate that Wilson’s element provides lower bounds of the eigenvalues. By the extrapolation or the splitting extrapolation, the O ( h 4 ) convergence rate can be obtained, where h is the maximal boundary length of uniform rectangles. Numerical experiments are carried to verify the theoretical analysis made. It is worth pointing out that these results are new, compared with the recent book, Lin and Lin [Q. Lin, J. Lin, Finite Element Methods; Accuracy and Improvement, Science Press, Beijing, 2006].
Keywords :
Wilson’s element , Eigenvalue Problem , Extrapolation , Global superconvergence
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2009
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1554863
Link To Document :
بازگشت