Title of article :
Stability analysis of an HIV/AIDS epidemic model with treatment
Author/Authors :
Cai، نويسنده , , Liming and Li، نويسنده , , Xuezhi and Ghosh، نويسنده , , Mini and Guo، نويسنده , , Baozhu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
An HIV/AIDS epidemic model with treatment is investigated. The model allows for some infected individuals to move from the symptomatic phase to the asymptomatic phase by all sorts of treatment methods. We first establish the ODE treatment model with two infective stages. Mathematical analyses establish that the global dynamics of the spread of the HIV infectious disease are completely determined by the basic reproduction number ℜ 0 . If ℜ 0 ≤ 1 , the disease-free equilibrium is globally stable, whereas the unique infected equilibrium is globally asymptotically stable if ℜ 0 > 1 . Then, we introduce a discrete time delay to the model to describe the time from the start of treatment in the symptomatic stage until treatment effects become visible. The effect of the time delay on the stability of the endemically infected equilibrium is investigated. Moreover, the delay model exhibits Hopf bifurcations by using the delay as a bifurcation parameter. Finally, numerical simulations are presented to illustrate the results.
Keywords :
Global stability , time delay , Hopf bifurcation , basic reproduction number , HIV/AIDS
Journal title :
Journal of Computational and Applied Mathematics
Journal title :
Journal of Computational and Applied Mathematics