Title of article :
A note on constrained degree reduction of polynomials in Bernstein–Bézier form over simplex domain
Author/Authors :
Lu، نويسنده , , Lizheng، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
3
From page :
324
To page :
326
Abstract :
In the paper [H.S. Kim, Y.J. Ahn, Constrained degree reduction of polynomials in Bernstein–Bézier form over simplex domain, J. Comput. Appl. Math. 216 (2008) 14–19], Kim and Ahn proved that the best constrained degree reduction of a polynomial over d -dimensional simplex domain in L 2 -norm equals the best approximation of weighted Euclidean norm of the Bernstein–Bézier coefficients of the given polynomial. In this paper, we presented a counterexample to show that the approximating polynomial of lower degree to a polynomial is virtually non-existent when d ≥ 2 . Furthermore, we provide an assumption to guarantee the existence of solution for the constrained degree reduction.
Keywords :
Degree Elevation , Simplex domain , Bernstein polynomials , Constrained degree reduction
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2009
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1555065
Link To Document :
بازگشت