Title of article :
Quadrature formulas on the unit circle with prescribed nodes and maximal domain of validity
Author/Authors :
Bultheel، نويسنده , , Adhemar and Daruis، نويسنده , , Leyla and Gonzلlez-Vera، نويسنده , , Pablo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
16
From page :
948
To page :
963
Abstract :
In this paper we investigate the Szegő–Radau and Szegő–Lobatto quadrature formulas on the unit circle. These are ( n + m ) -point formulas for which m nodes are fixed in advance, with m = 1 and m = 2 respectively, and which have a maximal domain of validity in the space of Laurent polynomials. This means that the free parameters (free nodes and positive weights) are chosen such that the quadrature formula is exact for all powers z j , − p ≤ j ≤ p , with p = p ( n , m ) as large as possible.
Keywords :
Laurent polynomials , Gauss–Lobatto quadrature , error estimates , Interpolatory quadrature
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2009
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1555236
Link To Document :
بازگشت