Title of article :
Product-type skew-Hermitian triangular splitting iteration methods for strongly non-Hermitian positive definite linear systems
Author/Authors :
Krukier، نويسنده , , Lev A. and Martynova، نويسنده , , Tatiana S. and Bai، نويسنده , , Zhong-Zhi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
14
From page :
3
To page :
16
Abstract :
By further generalizing the modified skew-Hermitian triangular splitting iteration methods studied in [L. Wang, Z.-Z. Bai, Skew-Hermitian triangular splitting iteration methods for non-Hermitian positive definite linear systems of strong skew-Hermitian parts, BIT Numer. Math. 44 (2004) 363–386], in this paper, we present a new iteration scheme, called the product-type skew-Hermitian triangular splitting iteration method, for solving the strongly non-Hermitian systems of linear equations with positive definite coefficient matrices. We discuss the convergence property and the optimal parameters of this method. Moreover, when it is applied to precondition the Krylov subspace methods, the preconditioning property of the product-type skew-Hermitian triangular splitting iteration is analyzed in detail. Numerical results show that the product-type skew-Hermitian triangular splitting iteration method can produce high-quality preconditioners for the Krylov subspace methods for solving large sparse positive definite systems of linear equations of strong skew-Hermitian parts.
Keywords :
Hermitian and skew-Hermitian splitting , Product-type skew-Hermitian triangular splitting , Krylov subspace method , Convergence theory , Splitting iteration method
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2009
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1555243
Link To Document :
بازگشت