Title of article :
Distributional equation for Laguerre–Hahn functionals on the unit circle
Author/Authors :
Branquinho، نويسنده , , A. and Rebocho، نويسنده , , M.N.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
9
From page :
634
To page :
642
Abstract :
Let u be a Hermitian linear functional defined in the linear space of Laurent polynomials and F its corresponding Carathéodory function. We establish the equivalence between a Riccati differential equation with polynomial coefficients for F , z A F ′ = B F 2 + C F + D , and a distributional equation for u , D ( A u ) = B ̃ u 2 + C ̃ u + H ̃ L , where L is the Lebesgue functional, and the polynomials B ̃ , C ̃ , H ̃ are defined in terms of the polynomials A , B , C , D .
Keywords :
Measures on the unit circle , Semi-classical functionals , Hermitian functionals , Laguerre–Hahn affine class on the unit circle , Carathéodory function
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2009
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1555360
Link To Document :
بازگشت