Title of article :
Error estimates for Gaussian quadratures of analytic functions
Author/Authors :
Milovanovi?، نويسنده , , Gradimir V. and Spalevi?، نويسنده , , Miodrag M. and Prani?، نويسنده , , Miroslav S.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
6
From page :
802
To page :
807
Abstract :
For analytic functions the remainder term of Gaussian quadrature formula and its Kronrod extension can be represented as a contour integral with a complex kernel. We study these kernels on elliptic contours with foci at the points ±1 and the sum of semi-axes ϱ > 1 for the Chebyshev weight functions of the first, second and third kind, and derive representation of their difference. Using this representation and following Kronrod’s method of obtaining a practical error estimate in numerical integration, we derive new error estimates for Gaussian quadratures.
Keywords :
Chebyshev weight function , Remainder term for analytic functions , Contour integral representation , Error Bound , Gaussian quadrature formula
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2009
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1555382
Link To Document :
بازگشت